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Abstract

We check that Ogus’ convergent F -isocrystal, associated to a proper smooth mor-
phism of smooth varieties in characteristic p, is precisely the higher direct image in
crystalline cohomology. We also show independently that these higher direct images
satisfy base change and Hard Lefschetz theorems.
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1 Introduction

Let f : X → S be a proper smooth morphism of smooth varieties over a perfect field
k of characteristic p, whose ring of Witt vectors will be denoted by W = W (k), and
let i ≥ 0. In this short note we check various properties about the higher direct image
(in crystalline cohomology) Rifcrys∗OX/W . In particular we show directly, using only
the classical machinery of crystalline cohomology, that it (or rather, its isogeny class) is
naturally an F -isocrystal on (S/W )crys which satisfies base change and Hard Lefschetz
theorems.

In Section 6 we show that the isogeny class of Rifcrys∗OX/W is nothing other than
the convergent F -isocrystal Rif∗OX/K constructed by Ogus [8]; we refer to Section 6 for
the precise assertion. The reader who is primarily interested in this identification may
skip Sections 4 and 5; in fact, once this identification is established the results of Sections
4 and 5 may be recovered from [8], but our proofs have the advantage, as mentioned
above, of using only classical crystalline cohomology. Strangely, this identification has
not previously been checked in the literature, though it was asserted without proof by
Trihan–Matsuda [7, Corol. 3].

I thank B. Bhatt, H. Esnault, Y. Nakkajima, P. Scholze, and A. Shiho for various
discussions about crystalline cohomology which were useful when preparing this note.
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2 Crystalline cohomology and isocrystals

We first introduce some notation and terminology. Given a smooth variety X over k, the
crystalline site (X/W )crys we use is the one whose objects are data (U ↪→ T, γ), where:
U is an open subscheme of X; U ↪→ T is a nilpotent closed embedding of W -schemes;
and γ is a divided power structure on the ideal sheaf Ker(OT � OU ) of OT which is
required to be compatible with the canonical pd-structure on pW , i.e., it is required to
satisfy γn(p) = pn/n! for all n ≥ 0. The structure sheaf OX/W on (X/W )crys is given
by (U ↪→ T, γ) 7→ ΓZar(T,OT ), and we denote by Mod(X/W ) the category of OX/W -
modules on (X/W )crys. Given E ∈ Mod(X/W ) and an object (U ↪→ T, γ) ∈ (X/W )crys,
the associated OT -module (the “value” in most of the literature) on TZar is denoted by
ET ; then E is called a crystal1 if and only if each ET is a coherent OT -module and, for
every morphism h : (U ′ ↪→ T ′, γ′)→ (U ↪→ T, γ) in (X/W )crys, the canonical base change
map h∗ET → ET ′ of coherent OT ′-modules is an isomorphism. Thus crystals form a full
subcategory2 Cr(X/W ) of Mod(X/W ).

More generally, the theory of the previous paragraphs applies whenever W is replaced
by, for example, any Noetherian, p-adically complete, flat W -algebra A and X is replaced
by a smooth scheme over A/p.

We denote by Mod(X/W )⊗Qp and Isoc(X/W ) := Cr(X/W )⊗Qp the isogeny cate-
gories obtained by replacing Hom by Hom⊗ZZ[1p ]; the image of an object E will be denoted
by E⊗Qp and called the isogeny class of E . It is convenient, and hopefully not misleading,
to say that an object of Mod(X/W ) ⊗ Qp “is” an isocrystal if and only if it belongs to
the essential image of the fully faithful inclusion Isoc(X/W )→ Mod(X/W )⊗Qp.

A morphism f : X → S of smooth k-varieties induces a morphism of ringed topoi

f : ((X/W )crys,OX/W ) −→ ((S/W )crys,OS/W ),

with associated adjoint pair denoted by

fcrys∗ : Mod(X/W ) −→ Mod(S/W ), E 7→ fcrys∗E ,
f∗crys : Mod(S/W ) −→ Mod(X/W ), E 7→ f−1crysE ⊗f−1OS/W

OX/W

Here (fcrys∗, f
−1
crys) : (X/W )crys → (S/W )crys is the usual morphism of topoi of sheaves of

sets. The resulting higher direct images, computed in terms of resolutions by injective
OX/W -modules, are denoted by Rifcrys∗ : Mod(X/W ) −→ Mod(S/W ).

Our first main result is the following:

Proposition 2.1. Let f : X → S be a proper smooth morphism of smooth varieties over
k. Then the object Rifcrys∗OX/W ⊗Qp ∈ Mod(X/W )⊗Qp is an isocrystal.

Proof. Given E ∈ Mod(S/W ), the question of whether E ⊗ Qp is an isocrystal is Zariski
local on S, by [9, Lem. 0.7.5], so we may suppose that S = SpecA is affine. Since a
morphism in a Zp-linear abelian category becomes an isomorphism in the isogeny category
if and only if it had kernel and cokernel killed by a power of p (i.e., an isogeny), the
proposition reduces to the following lemma:

1From the general point of view of ringed topi, a crystal is exactly a quasi-coherent OX/W -module of
finite presentation, by [1, Prop. IV.1.1.3].

2Irrelevant warning: Although both categories are abelian (crystals by [1, Prop. IV.1.7.6]), the inclusion
functor Cr(X/W ) → Mod(X/W ) does not preserve kernels.
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Lemma 2.2. Let f : X → S be a proper smooth morphism of smooth varieties over k;
assume that S = SpecA is affine. Then there exists E iX/S ∈ Cr(S/W ) and a morphism of

OS/W -modules E iX/S → Rifcrys∗OX/W whose kernel and cokernel are killed by a power of
p.

To prove Lemma 2.2 we briefly recall the standard description of crystals on a smooth
affine base:

Lemma 2.3. Suppose that SpecA is a smooth affine variety over k, and let A be a p-
adically complete, formally smooth W -algebra lifting A. Then the following categories are
equivalent:

- Cr(SpecA/W );

- finitely generated A-modules with HPD-stratification;

- finitely generated A-modules with a topologically quasi-nilpotent integrable connec-
tion.

Proof. To explain “HPD-stratification” in this context, let A(1) and A(2) be the p-adic
completions of the pd-envelopes of the “multiplication followed by mod p” mapsA⊗̂WA →
A and A⊗̂WA⊗̂WA → A, and let

p1, p2 : A → A(1), µ : A(1)→ A, p12, p13, p22 : A(1)→ A(2)

be the maps induced by the obvious projections and multiplication. Standard properties
of pd-envelopes imply that A(1)/pr is the pd-envelope of the “multiplication followed by
mod p” map A/pr ⊗Wr A/pr → A, and similarly for A(2), for any r ≥ 1; moreover, each
map pi : A → A(1) is flat by [3, Corol. 3.35], and similarly for the maps A(1)→ A(2).

An HPD-stratification on a finitely generated A-module M is by definition an isomor-
phism ε : M⊗A,p1A(1)

'→M⊗A,p2A(1) of A(1)-modules which satisfies the usual cocycle
conditions, namely that µ∗(ε) : M →M is the identity and that p∗12(ε) ◦ p∗23(ε) = p∗13(ε).

A finitely generated A-module M with HPD-stratification ε induces a crystal E(M, ε)
as follows: for each object (U ↪→ T, γ) in (SpecA/W )crys, the formal smoothness of
W → A implies the existence of a map of W -schemes gT : T → SpecA lifting the
inclusion U ⊆ SpecA, whence E(M, ε)T := g∗M is a coherent OT -module. Given a
morphism h : (U2 ↪→ T2, γ2) → (U1 ↪→ T1, γ1) in (X/W )crys, the universal property
of A(1) implies the existence of a unique morphism gT1,T2 : T2 → SpecA(1) which is
compatible with the pd structures on both sides and satisfies

p1 ◦ gT1,T2 = gT1 ◦ h and p2 ◦ gT1,T2 = gT2 : T2 → SpecA

Then g∗T1,T2(ε) defines an isomorphism h∗g∗T1M
'→ g∗T2M ofOT2-modules, i.e., h∗E(M, ε)T2

'→
E(M, ε)T1 . The cocycle conditions on ε are exactly designed so that these isomorphisms
give the association (U ↪→ T, γ) 7→ E(M, ε)T the structure of a coherent OSpecA/W -
module, even a crystal, which up to isomorphism does not depend on the chosen maps
{gT : (U ↪→ T, γ) ∈ (SpecA/W )crys}.

In the other direction, to a crystal E we associate the finitely generated A-module
E(A) := lim←−r E(SpecA ↪→ SpecA/pr, γr), where γr is the canonical pd-structure on the
ideal pA/prA, satisfying γnr (p) = pn/n! for all n ≥ 0. The HPD-structure on E(A) is
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given by lim←−r of the base change isomorphisms (where we omit writing all the canonical
pd-structures):

E(SpecA ↪→ SpecA/pr)⊗A/pr,p1 A(1)/pr

∼=
��

E(SpecA
µ
↪→ SpecA(1)/pr)

E(SpecA ↪→ SpecA/pr)⊗A/pr,p2 A(1)/pr

∼=

OO

The cocycle conditions follow from similar base change identities involving A(2)/pr.
Next, starting with a finitely generated A-module M with HPD-stratification ε, one

may construct a connection ∇ : M →M ⊗A Ω1
A/W (the latter object is the A-module of

continuous relative Kähler differentials) as the composition

M →M ⊗A,p1 Kerµ→M ⊗A Ω1
A/W , m 7→ (m⊗ 1)− (id⊗ sw)(ε(m⊗ 1)).

Here sw : A(1)→ A(1) is induced by the “swap map” A⊗W A → A⊗W A, and the map
Kerµ→ Ω1

A/W is induced by the isomorphism

Ω1
A/W

'→ Kerµ/(Kerµ)[2], a db 7→ a⊗ b− b⊗ a

where [2] denotes the divided square of a pd-ideal. The cocyle conditions satisfied by ε
formally imply that ∇ is integrable. We will not require the definition of “topologically
quasi-nilpotent”, nor that this construction gives an equivalence of categories.

Corollary 2.4. Maintain the set-up of the previous lemma, and let E ∈ Cr(SpecA/W ).
Then E(A)[1p ] is a finite projective module over A[1p ].

Proof. By the standard result that modules equipped with an integrable connection over
a characteristic zero regular ring with enough differential operators are flat, this follows
from the third category of the previous lemma.3

Proof of Lemma 2.2. Write S = SpecA and let A be a p-adically complete, formally
smooth W -algebra lifting A, as in the previous lemma and corollary.

Base change for crystalline cohomology [3, Thm. 7.8] implies that the canonical base
change maps

RΓcrys(X/A)
IL

⊗A,p1 A(1) −→ RΓcrys(X/A(1))←− RΓcrys(X/A)
IL

⊗A,p2 A(1)

are quasi-isomorphisms in D(A(1)) (to be precise, the cited base change theorem yields

isomorphism after applying
IL

⊗Z Z/pn for any n ≥ 0, but the desired result is the obtained

3 It seems that the range of validity of this corollary and the previous lemma has not been explored in
the literature. Both results likely remain valid whenever A is a regular, p-adically complete, W -algebra

for which A/pA is regular and F-finite (i.e., finitely generated over its subring of pth-powers). Indeed,
these hypotheses imply that Ω1

A/W is a finite projective A-module and that there are enough differential
operators.
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by taking Rlimn and appealing to [3, Thm. 7.24]). Taking cohomology and using the
flatness of p1, p2 : A → A(1) (as mentioned at the start of the previous lemma), it follows
that

ε : H i
crys(X/A)⊗A,p1 A(1) ∼= H i

crys(X/A(1)) ∼= H i
crys(X/A)⊗A,p2 A(1),

which defines an HPD-stratification ε on H i
crys(X/A) (that ε satisfies the cocycle condi-

tions is an easy consequence of base change isomorphisms involving A(2)).

As explained in the previous lemma, there is an associated crystal

E iX/S := E(H i
crys(X

′/A), ε)

on X whose value on an object (U ↪→ T, γ) is given by g∗TH
i
crys(X/A) for any chosen map

of W -schemes gT : T → SpecA lifting the inclusion U ⊆ SpecA. Using the base change
quasi-isomorphism

Lg∗TRΓcrys(X/A)
∼→ (Rfcrys∗OX/W )T

of complexes of OT -modules (c.f., [3, Corol. 7.11]), we may define a map of coherent
OT -modules

(E iX/S)T = g∗TH
i
crys(X/A) −→ H i(Lg∗TRΓcrys(X/A))

'→ (Rifcrys∗OX/W )T . (†)

That these maps assemble to give a morphism of OX/W -modules E iX/S → Rifcrys∗OX/W
is a straightforward consequence of the fact that the HPD structure on E iX/S was defined
using base change.

To complete the proof we must show the existence of a large power of p (independent
of the object (U ↪→ T, γ)) which kills the kernel and cokernel of (†). The obstruction to
(†) being an isomorphism comes from the higher Tors Ljg

∗
TH

i+j
crys(X/A) for j > 0. Since

RΓcrys(X/A) is bounded by [3, Thm. 7.4.3], it is enough to prove the following claim for
each fixed i ≥ 0 and j > 0: there exists a power of p which kills Ljg

∗
TH

i
crys(X/A) for every

object (U ↪→ T, γ). But this claim is a trivial consequence of M := H i
crys(X/A) being

a finitely generated A-module which becomes finite projective after inverting p (by the
previous corollary). For example, first pick a finite length resolution P• → M by finite
projective A-modules; then the fact that M [1p ] is finite projective over A[1p ] implies that

there exists a section σ : M [1p ][0]→ P •[1p ] to the augmentation and that the composition

P •[1p ] → M [1p ][0]
σ−→ P •[1p ] is homotopic to the identity; clearing denominators yields a

morphism σ : M [0]→ P • such that M [0]
σ−→ P • →M [0] is multiplication by a power of p

and P • → M [0]
σ−→ P • is homotopic to multiplication by a power of p, say pN ; it follows

at once that Ljg∗TM is killed by pN for all j > 0. This completes the proof.

This completes the proof of Proposition 2.1, i.e., that Rifcrys∗OX/W ⊗Qp is an isocrys-
tal on (S/W )crys for any proper smooth morphism f : X → S of smooth k-varieties.

3 Upgrading Rifcrys∗OX/W ⊗Qp to an F -isocrystal

Now we consider base change properties and upgrade Rifcrys∗OX/W ⊗ Qp to have the
structure of an F -isocrystal.
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Remark 3.1 (Pull-backs). Suppose that k′ is another perfect field of characteristic p
and that σ : k → k′ is a homomorphism, with induced map on Witt vectors denoted by
σ : W ′ := W (k′) → W . Let S′ be a smooth k′-variety, and j : S′ → S a morphism over
σ. To eliminate any ambiguity about pull-backs, we mention again that j∗crys denotes the
pull-back functor associated to j as a morphism of ringed topoi ((S′/W ′)crys,OS′/W ′)→
((S/W )crys,OS/W ).

Let E be a crystal on (S/W )crys and recall the following consequences of [1, Corol. IV.1.2.4].
Firstly, j∗crysE is a crystal on (S′/W ′)crys. Secondly, if S = SpecA and S′ = SpecA′ are

affine, with p-adically complete, formally smooth W (resp. W ′)-algebra lifts j̃ : A →
A′ over σ, and E is represented by the finitely generated A-module E(A) with HPD-
stratification, then g∗crys(E) is represented by the finitely generated A′-module E(A)⊗AA′
with the obvious HPD-stratification obtained by base change; indeed, this is an easy
consequence of the isomorphisms

E(SpecA ↪→ SpecA/pr)⊗A/pr A′/pr
'→ (g∗crysE)(SpecA′ ↪→ SpecA′/pr)

(where we omit writing the canonical pd-structures) for r ≥ 1.

Proposition 3.2. Let f : X → S be a proper smooth morphism of smooth varieties
over k.

(1) With j : S′ → S as in the previous remark, let

X ′
f ′ //

j′

��

S′

j

��

// Spec k′ //

σ
��

SpecW ′

σ

��
X

f
// S // Spec k // SpecW

be the resulting commutative diagram of schemes in which the left square is cartesian.
Then the base change morphism

j∗crysR
ifcrys∗OX/W −→ Rif ′crys∗OX′/W ′

in Mod(S′/W ′) becomes an isomorphism of isocrystals in Mod(S′/W ′)⊗Qp;

(2) Denoting by FS : S → S the absolute Frobenius, the natural morphisms

F ∗ScrysR
ifcrys∗OX/W −→ Rif

(p/S)
crys∗ OX(p/S)/W

F ∗
X/S−−−→ Rifcrys∗OX/W

of OX/W -modules become isomorphisms of isocrystals in Mod(X/W )⊗Qp, thereby
giving Rifcrys∗OX/W ⊗Qp the structure of an F -isocrystal on (S/W )crys.

Proof. To prove (1) we may suppose that S = SpecA and S′ = SpecA′ are affine, with
p-adically complete, formally smooth W (resp. W ′)-algebra lifts j̃ : A → A′ over σ.
According to the previous remark, and the definition of the crystals E iX/S , E iX′/S′ in the
proof of Lemma 2.2, we must show that the canonical base change map

H i
crys(X/A)⊗A A′ −→ H i

crys(X
′/A′)
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has kernel and cokernel killed by a power of p. But this follows from the exact same Tor
vanishing estimates at the end of the proof of Lemma 2.2.

In (2) we are using the standard notation for the pull-back f (p/S) : X(p/S) → S of
f : X → S along FS : S → S. The first arrow is then the base change morphism, which is
an isogeny by part (1), while the second arrow is induced by the relative Frobenius FX/S ;
it is also an isogeny, by [4, Thm. 1.9].

4 Fibres of Rifcrys∗OX/W ⊗Qp

If E is a crystal in (S/W )crys, and j : y = Spec k′ ↪→ S is a closed point (here k′ is a finite
extension of k), then the pull-back j∗crysE is a crystal in (y/W ′)crys by Remark 3.1, which
may be identified with the finitely generated W ′-module Ey := H0

crys(y/W
′, j∗crysE).

By naturality of the Frobenius and isogeny category, if E ⊗ Qp is an F -isocrystal on
(S/W )crys then (E ⊗Qp)y := Ey[1p ] inherits the structure of an F -isocrystal on (y/W ′)crys,

i.e., a finitely generated W ′[1p ]-vector-space equipped with an isomorphism with its Frobe-

nius pull-back (we will often say “F -isocrystal over W ′”).

Proposition 4.1. Let f : X → S be a proper smooth morphism of smooth varieties over
k, and let y = Spec k′ ↪→ S be a closed point. Then there exists a natural base change
isomorphism

(Rifcrys∗OX/W ⊗Qp)y
'→ H i

crys(Xy/W
′)[1p ]

of F -isocrystals over W ′.

Proof. This is a special case of the base change isomorphism of Proposition 3.2(1) (which
is clearly compatible with the F -isocrystal structure given in part (2) of the same propo-
sition).

It is worth noting here, since it will be required in a moment, that a global section of
an isocrystal is determined by its value at a point:

Lemma 4.2. Let S be a smooth connected variety over k, and fix a closed point y =
Spec k′ ↪→ S. Then the functor

Isoc(S/W ) −→ fin. gen. W ′[1p ] -mods, E ⊗Qp 7→ Ey[1p ]

is faithful.

Proof. Using internal Homs, it is sufficient to prove that the canonical map on global
sections H0

crys(S/W, E) → Ey has kernel killed by a power of p; moreover, by picking a
finite affine open cover of S it is easy to reduce to the case that S = SpecA is affine. Let
A be a p-adically complete, formally smooth W -algebra lifting A, and lift the k′-point
A → k′ to a W ′-point A → W ′ using formal smoothness; denote the kernel of the latter
map by I.

Let M = E(A) be the finitely generated A-module with HPD-stratification ε cor-
responding to the crystal E , and m ∈ M an element satisfying ε(m ⊗ 1) = m ⊗ 1 in
M ⊗Ap2

A(1), i.e., a global section of E on (S/W )crys. Since Ey = M ⊗A W ′ by Re-
mark 3.1, the lemma reduces to proving the following: assuming that m ∈ IM we must
show that m is killed by a power of p.
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Let B be the I-adic completion of A, whence formal étaleness of W → W ′ implies
that the map of W -algebras B → B/IB = A/I = W ′ has a section α : W ′ → B. We will
use the two (very different) maps from A to B:

g1 : A ↪→ B, g2 : A ↪→ B � B/IB = W ′
α
↪→ B.

Note that after composition with B � W ′ � k′, both g1 and g2 become the map A �
A → k′. Therefore, if we let D be the p-adic completion of the pd-envelope of the ideal
IB ⊆ B, and let j : B → D denote the canonical map, then it follows from the universal
property of A(1) that there is a unique map g1,2 : A(1)→ D which satisfies

g1,2 ◦ pi = j ◦ gi : A → D

for i = 1, 2 (it may be helpful to the reader to note at this point that we are making
essentially the same argument as the third paragraph of the proof of Lemma 2.3).

Then ε induces an isomorphism M ⊗A,g1 D
'→M ⊗A,g2 D which sends m⊗ 1 to m⊗ 1

(this crucially uses that m is a global section). But the element m⊗1 ∈M⊗A,g2D is zero
since m ∈ IM , and so we deduce that the element m ⊗ 1 ∈ M ⊗A,g1 D is also zero. To
deduce that this implies that m is killed by a power of p (and so complete the proof), we
must show that Ker(M →M⊗A,g1D) is killed by a power of p; but M is a direct summand
of a free A-module up a power of p, by Corollary 2.4, and so it is sufficient to show that
j ◦ g1 is injective. Since g1 is injective, it remains only to note that the canonical map
j : B → D is also injective, which can be proved in various ways, for example as follows:
firstly, since B is IB-adically complete and regular, and B/IB = W ′ is local and regular,
it follows that B is local and that IB is generated by a regular sequence t1, . . . , td; so there
is a non-canonical isomorphism B ∼= W ′[[T ]] := W ′[[T1, . . . , Td]], ti 7→ Ti of W ′-algebras,
using which we may define an injective map p : B →W ′[[T ]], ti 7→ pTi; this map p factors
through j since W ′[[T ]] is p-adically complete and its ideal generated by p has divided
powers; it follows that j is also injective.

5 Hard Lefschetz

Let f : X → S be a projective smooth morphism of smooth varieties over k, let L be a line
bundle on X which is relatively ample with respect to f , and let u := c1(L) ∈ H2

crys(X/W )
denote its crystalline Chern class (which is defined without inverting p in the crystalline
cohomology by, e.g., [4, §3.1]). Also denote by u the induced cup product map of OS/W -
modules u ∪ − : Rifcrys∗OX/W → Ri+2fcrys∗OX/W ; as further explanation, this cup
product map results from taking the image of c1(L) in H0

crys(S/W,R
2fcrys∗OX/W ) and

then using the graded OS/W -algebra structure on
⊕

i≥0R
ifcrys∗OX/W .

Proposition 5.1. Under the set-up of the previous paragraph, assume in addition that f
has pure relative dimension d ≥ 0. Then the induced morphism of isocrystals

ui : Rd−ifcrys∗OX/W ⊗Qp → Rd+ifcrys∗OX/W ⊗Qp

on (S/W )crys is an isomorphism.
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Remark 5.2 (Classical Hard Lefschetz for crystalline cohomology). Consider first the
case that S = Spec k, so that X is a smooth, projective variety over k, of pure dimension
d, and L is an ample line bundle on X with u := c1(L) ∈ H2

crys(X/W ); then the previous
proposition is the assertion that the induced cup product map

ui : Hd−i
crys(X/W )[1p ] −→ Hd+i

crys(X/W )[1p ] (1)

is an isomorphism. This is precisely the classical Hard Lefschetz theorem for crystalline
cohomology, whose proof we now recall.

Assuming in addition that L = O(D) for some smooth hyperplane section D of X, that
X is geometrically connected over k, and that k is finite, isomorphism (1) follows from the
`-adic case, as explained in [6]. We now explain how to reduce the more general assertion
above to this special case. Firstly, we may assume that X is geometrically connected over
k by replacing k by H0(X,OX); then we may assume k is finite by a standard spreading
out argument [5, §3.8]; thirdly we may assume L is very ample by replacing L by Lm,
as this merely replaces u by mu; and finally we may assume L = O(D) for some smooth
hyperplane section D of X, by passing to a finite extension of k after which L = i∗O(1)
for some closed embedding i : X ↪→ PNk such that there exists a hyperplane in PNk having
smooth intersection with X.

Proof of Proposition 5.1. We may suppose that S is connected, and so apply the lemma
and proposition of Section 4 to reduce to showing that

c1(L|Xy)i : Hd−i
crys(Xy/W )[1p ] −→ Hd+i

crys(Xy/W )[1p ]

(the ith iterate of the cup product with the Chern class of the ample line bundle L|Xy on
Xy) is an isomorphism, where we have picked a k-rational point y ∈ S. This is indeed an
isomorphism by the classical Hard Lefschetz isomorphism (1) of the previous remark.

6 Comparing Rifcrys∗OX/W ⊗Qp to Rif∗OX/K
We now recall some results concerning (p-adically) convergent isocrystals from [8], re-
stricting to the case in which S is a smooth variety over k since this is our only case of
interest. An enlargement of S is a pair (T, zT ) where T is a p-adic formal scheme which is
flat and (topologically) of finite type over W , and zT : (T ×W k)red → S is a morphism of
k-varieties; a p-adic enlargement is almost the same, except that zT is instead a morphism
T ×W k → S. A morphism between (p-adic) enlargements is defined in the obvious way,
and there is a functor from the category of p-adic enlargements to that of enlargements
given by sending (T, zT ) to (T, (T ×W k)red → T ×W k

zT−→ S).
If T is a p-adic formal scheme which is flat and of finite type over W , then we follow

Ogus and denote by Coh(OT ⊗K) the isogeny category CohOT ⊗ Qp associated to the
category of coherent OT -modules (here K = W (k)[1p ], though it is appearing only as a
piece of notation).

A convergent isocrystal E on S is the following: firstly, for each enlargement (T, zT )
of S, a given object ET ∈ Coh(OT ⊗ K); secondly, for each morphism g : (T ′, zT ′) →
(T, zT ) of enlargements, a given isomorphism g∗ET

'→ ET ′ in Coh(OT ⊗K); thirdly, these
isomorphisms are required to satisfy the obvious cocycle relation in the presence of a third

9
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morphism of enlargements. A p-adically convergent isocrystal is defined in the same way,
but restricting to p-adic enlargements.

There are restriction functors

Cr(S/W )
ρ // Isoc(p)(S/W ) Isoc(1)(S/W )oo
kk

where the middle and right terms are our notation for (p-adically) convergent isocrystals.
The right arrow is obtained by simply pulling back the convergent crystal to the category
of p-adic enlargements. The bendy arrow was constructed by Ogus in [9, §7]. The
left arrow associates a p-adically convergent isocrystal ρ(E) to a crystal E as follows [8,
Ex. 2.7.3]: for any p-adic enlargement (T, zT ), we let ρ(E)T be the isogeny class of the
coherent OT -module

T ⊇ Spf A 7→ (z∗T,A crysE)(A).

Here Spf A ⊆ T is an affine open (so A is a p-adically complete, flat W -algebra),

we write zT,A : SpecA/p ⊆ T ×W k
zT−→ for the indicated composition, z∗T,A crysE ∈

Cr((SpecA/p)/A) is the resulting pull-back of the crystal (a generalisation of Remark
3.1), and finally

(z∗T,A crysE)(A) := lim←−
r

(z∗T,A crysE)(SpecA/p ↪→ SpecA/pr, can. pd. str.)

are the “sections” of z∗T,A crysE on A, in the sense of (a generalisation of) Lemma 2.3.
By the universal property of the isogeny category, ρ extends to ρ : Isoc(S/W )⊗Qp →

Isoc(p)(S/W ). By a slight abuse of notation we will also allow ourselves to apply ρ to
any object of Mod(S/W ) ⊗ Qp which is an isocrystal, i.e., isomorphic to an object of
Isoc(S/W ) (to make this precise, one should perhaps introduce a category of modules
Mod(p)(S/W ), containing Isoc(p)(S/W ) as a full subcategory, and note that ρ extends
to a functor ρ : Mod(S/W ) ⊗ Qp → Mod(p)(S/W ); then ρ will take isocrystals to the

essential image of the fully faithful inclusion Isoc(p)(S/W )→ Mod(p)(S/W )).

Proposition 6.1. Let f : X → S be a proper smooth morphism of smooth varieties over k.
For any p-adic enlargement (T, zT ) of S, the coherent OT ⊗K-module ρ(Rifcrys∗OX/W ⊗
Qp)T is naturally isomorphic to the isogeny class of the coherent OT -module

T ⊇ Spf A 7→ H i
crys(X ×S (SpecA/p)/A).

Proof. This the indicated OT -module is really a well-defined coherent OT -module is an
easy consequence of base change and finite generation for crystalline cohomology.

The proof of Proposition 3.2 worked in much greater generality than stated, in par-
ticular for the diagram

X ×S SpecA/p f ′ //

j′

��

SpecA/p
zT,A

��

= // SpecA/p //

��

SpecA

��
X

f
// S // Spec k // SpecW

thereby showing that the canonical base change map

(z∗T,A crysR
ifcrys∗OX/W )(A) −→ H i

crys(X ×S (SpecA/p)/A)

has kernel and cokernel killed by a power of p, which is exactly the desired assertion.
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A note on higher direct images in crystalline cohomology

The restriction functors we introduced above obviously respect the additional data of
the structure of an F -isocrystal, thereby giving rise to restriction functors

F-Isoc(S/W )
ρ // F-Isoc(p)(S/W ) F-Isoc(1)(S/W )oo

ll

(the notation should be clear). These functors are equivalences by Dwork’s trick, c.f.,
[8, Prop2.18] [2, Thm. 2.4.2], and in the statement of the next proposition we use these
equivalences to identify the categories:

Corollary 6.2. With notation as in the previous proposition, the F -isocrystal
Rifcrys∗OX/W ⊗Qp is naturally isomorphic to the convergent F -isocrystal Rif∗OX/K con-
structed by Ogus [8, Thm. 3.1].

In particular, the global sections of Rif∗OX/K are equal to H0
crys(S/W,R

ifcrys∗OX/W )[1p ].

Proof. The previous proposition shows that ρ(Rifcrys∗OX/W ⊗Qp) has the characterising
property of Rif∗OX/K as a p-adically convergent crystal, while the F -isocrystal structures
on each are defined in exactly the same way, namely by base change along the absolute
Frobenius of S followed by the relative Frobenius isomorphism (the reader should directly
compare the proof of Proposition 3.2(2) with that of [8, Thm. 3.7]). The assertion about
global sections then follows from [9, Bottom of pg. 160].
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